
Journal Applied Mechanics and Technical Physics, Vol. 37, No. I, 1996 

M O D I F I C A T I O N  OF T H E  LEES M E T H O D  

IN C A L C U L A T I O N S  O F  H E A r  F L U X  

F R O M  A S P H E R I C A L  PARTICLE 

AT A R B I T R A R Y  K N U D S E N  N U M B E R S  

A. A. Yushkanov I and S. A. Savkov 2 UDC 533.72 

Currently, different versions of moment methods including the Lees method and that of half-space 
moments are widely used to solve the problems of kinetic gas theory. A common feature of these methods 
is that the distribution function is sought as a sum of velocity polynomials, the coefficients of which can be 
determined by solving a set of moment equations. The latter are deduced by multiplying the kinetic equation 
by the corresponding polynomials and then integrating it over the velocity. 

In the method of half-space moments the same set of discontinuous velocity functions is employed 
as polynomials in the distribution function and in the derivation of the moment equations. This makes the 
method logically closed and allows a more correct description of the character of distribution function changes 
due to the interaction of gas molecules with each other and with the aerosol particles involved. However, the 
correct description of gas behavior in a number of cases calls for too great a number of moments, which 
substantially complicates the solution of the problem and makes it simply impossible to solve sometimes. 

In the Lees method the distribution function can also be expressed in terms of the discontinuous 
velocity polynomials. However, the moment equations are deduced using continuous functions. Some of these 
are chosen so that the corresponding moment equations could represent one of the conservation laws. The 
missing moments have to be given artificially. The fact that in a given method the conservation laws are 
satisfied automatically, allows one to obtain satisfactory results by taking the distribution function rather 
approximately. However, the real pattern of distribution function relaxation is substantially distorted because 
the information between the cones of particle influence, i.e., the mixing of distribution functions for molecules 
falling and reflected from the surface, can be transferred not only by a collision integral, which is typical of 
the method of half-space moments, but also artificially by multiplying this integral by a continuous velocity 
function. For the same reasons the Lees method does not allow a correct description of the influence of mass 
and heat fluxes throughout the cones, which, for a number of problems, is of its particular interest. 

The present paper reports a procedure (the reverse of the Lees method) of solving a kinetic equation 
which combines the advantages of both the half-space moments and the Lees methods, i.e., the distribution 
function is expressed in terms of the continuous velocity functions used in the direct method to derive the 
moment equations and the kinetic equation is multiplied by the corresponding discontinuous ones. First, this 
approach makes it possible to decrease the number of moments and moment equations necessary to satisfy 
the conservation laws automatically. Second, it allows a correct description of the character of distribution 
function changes due to the interaction of gas molecules with each other and with the particle surface. 

For example, consider now the problem of calculating the heat flux from a spherical particle with 
radius R uniformly heated to a temperature T~ in gas in which a constant temperature To is maintained at 
infinity. Assume that the temperature difference AT = T~ - To is small enough to linearize the problem. 

At each point of space the particle is connected with three invariant "cones" involving the rate of 
molecules flying toward the particle, from it, and past it (regions I-III in Fig. 1). The cone boundaries are 

1Moscow Pedagogical University, Moscow 107846. 2Orel State Pedagogical University, Orel 302015. 
Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 37, No. 1, pp. 57-63, January-February, 
1996. Original article submitted July 19, 1994; revision submitted January 12, 1995. 

48 0021-8944/96/3701-0048 $15.00 @ 1996 Plenum Publishing Corporation 



Fig. 1 

crossed by gas molecules only upon collisions with each other. Since regions I and III merge when this and 
similar problems are solved by the conventional Lees method (see, e.g., [1-3]), it is natural to start our 
considerations with this case. 

Introduce a spherical system of coordinates with their origin at the particle center. The state of the 
gas around the particle is described by the kinetic Boltzmann equation [4]: 

V - V f  = ./st (1) 

(V is the eigenvelocity of gas molecules; f is the velocity distribution function of the molecules; Jst is the 
collision integral). 

Further, we restrict ourselves to the BGK-model of collision integrals [5]: 

T 

Here 

r -  x F -  5n ~ ; f e q = n ~ , ~ )  exp 2 k T ]  

is the local equilibrium distribution function; A is the mean free path of the gas molecules; ae is its heat 
conductivity. 

Due to the problem linearity, there is a rather small difference between the distribution function and 
the distribution at infinity: 

f = f 0 ( l + q S ) ,  f 0 = n 0 \ ~ ]  exp 2kTo 

(m and n are the mass and concentration of the gas molecules; k is the Boltzmann constant). 
Thus, the problem reduces to the determination of the q5 correction for the equilibrium distribution 

function f0- 
The conventional Lees method uses a two-flow distribution function: 

r177  = + C2a , 

where the "+" sign refers to the distribution function for molecules flying from the particle, the velocity vector 
of which is within region II (Fig. 1); the *'-" sign refers to molecules whose velocity vector is beyond the 
given region. For convenience, let us introduce the auxiliary function: 

r ]+=  { 1 at Cr < C ~ / 1 - ( R / r )  2, C = Vff--m/2kT. 
0 at cr > c /t 

Thus the distribution function to be determined can be written in the form 

= + ( I , - ( i  - 7 + ) .  (2)  

The coefficients a~ can be determined from a set of moment  equations obtained by multiplying the 
kinetic equation by 1, Cr, C 2, CrC 2 and integrating it over the velocity. Accordingly, in the reverse procedure 
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the distribution function must be sought in the form 

6) = al zr Cra2 + C2a3 + CrC2 a4. (3) 

The moment equations must be derived using 77 +, (1 - q+), C2r/+, and C2(1 - 7+). 
Multiplying the kinetic equation involving distribution function (3) by the above moments and 

integrating it over the velocity we obtain the following set of differential equations: 

4- ~ r2 dr al + a3 "4- 1~ 1 -  -~ ~r -4a2 A- ga4 

! (  ( R2)1]2 ( ~2)3/2)(1 5 ) 1 R2 a4 
+ 2=F3 1 - - - ~  4- 1 -  a 2 + ~ a 4  = 4 - ~  r 2 4T' 

(4) 
1 R2 d ( ( rff~)3/2) d ( 5  35 ) 

4- -~  r 2 dr(al+3a3)+ I=F 1 -  -~r -~a2A--~a4 

+ 23=3 1 - ~ -  4- l - ~ -  a2+~-~a4 = :Fv / -  ~ r2 2," 

The solution decaying at infinity is of the form 

2 r ,  4 5 1 - 7  - 2  +2Ln 1+ 1 - 7  + -2Ln2 , (5) 

5 R 2 1 1 R 2 R 2 
. . . .  K, a4 -~ K. a2 2 r 2 K, a3 - - - -5  al 4 rv ~ -  

The integration constant K can be found through the condition of gas molecule reflection from the particle 
surface: 

f+ = ~tf- at r = R. (6) 

In this case, f -  and f+  are the distribution functions for molecules falling and reflected from the particle; 
~l is the operator describing the reflection law. 

Condition (6) must also be written in moment form. To do this, it must be introduced into kinetic 
equation (1). Then, the derivation of moment equations (4) will automatically give the corresponding moment 
boundary conditions. Formally, this means (see, e.g., [6]) that equality (6) must be written in the form 
Crf + = Cr~f-, multiplied successively by 7/+ and C2r/+, and integrated over the velocity. As a result, we 
get a set of moment conditions on the particle surface: 

f r/+Cr(al + Cra2 + C2a3 + CrC2a4)exp(-C2)dC = J rl+Cr~f - dC, 

rl+C2Cr(al Cra2 "4- C2a3 -t- CrC2a4) exp( -C 2) dC f 71+C2CrQf - dC. + 

Note that the arbitrary law of gas molecule reflection from the particle surface can be considered 
only by using discontinuous velocity functions to obtain the moment equations. Thus, the conventional Lees 
method considers only the conditions of specular-diffusion reflection. 

In the analysis we restrict ourselves to the law of a purely diffusive reflection: 

An 

In this case the conditions on the particle surface take the form 

1 (~  ) (41 - 5 ) 1 ( A n  A_~0T ) 
V~ a l + a 3  + a 2 + ~ a 4  = 4 x / ~  2--+no ' 

(7) 

50 



v ~ ( a ,  + aa3) + a2 + ~ a4 = ~ \ ~0 + ~ ~ " 

Substituting (5) into (7) and solving the set of equations with respect to K, 

1 AT 
K =  

TR + :~ v/-~-(~- in 2 ) T o  

The radial component of the heat flux can be determined from the relation 

qr = / S - T v r e V  =~ Qr, 

where 

we arrive at 

(8) 

i R 2 AT 
Qr = 

5 7 + v @  - l n 2  r 2 To 

The direct Lees method for distribution function (2) gives 

I R 2 AT 
Qr 4 R r2 (9) 7 + v ~  To 

For a large particle ( R / T  --* oc) the results of direct and reverse methods coincide and lead to the 
well-known gas-dynamic solution [7] 

5 R R 
= - -  AT. (10) Or -~ r T-ff A r ,  qr -- ~e r2 

For a moderately large particle the heat flux can be represented as 

R 1 
--~XT (11) 

qr = eer2 i + C,A/R " 

Here Cl is the coefficient of the temperature jump, which obeys the relation 

A dT 
,ST = ~ C, d--7 

Comparing (8) and (11) we obtain Ct = ( 5 / 4 ) ( r / A ) V ' ~ ( 4 / 3 - I n  2) = 2.401, which differs by 9% from the exact 
solution 2.19 [8], calculated for this model of the collision integral, whereas for the direct method Ct = 3.75. 

In the free molecular regime ( R / r  -+ 0) the reverse method yields a heat flux value that is 1.5 times 
as large as that of the direct one. This can be caused by the insufficient number of retained moments in both 
the direct and reverse methods. 

Of particular interest is a consideration of all three influence cones. In this case, the correction for the 
distribution function must be sought in the form 

The moment equations must be obtained using 

( 2 - C 2 ) r / + ,  ( 5 - C 2 ) ( 1 - q + - q - )  

-I- C ra3 -I- C2 3 
- Cra 4. (12) 

(5) 
H Cr 7 - C  2 (1- '7+- '7- ) .  

In this case, 77- is an auxiliary function describing molecules flying to the particle, the velocity vector of which 
lies within region [ (Fig. 1): 

_ ~ 1 at cr < - c J 1  - ( n / ~ ) 2 ,  

= ~ 0 at cr > - c J 1  - ( R / r )  2 
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Multiplying the kinetic equation by the above moments and integrating it over the velocity, we obtain 
the following set of differential equations: 

1 R2 dal ~(  ( R2~3/2~da2 7 R 2 ( R 2 )  da3 
4 - ~  r2 d~ § 1 -  1 -  r2 ] ] ~ :1: 4---~ r 2 2 -  ~-  dr 

21(  ( R2"~ 5/2'~ da4 5 (  ( R 2 )  1/2 ( R2 ~ 3/2'~ a2 
+~-~ 1 -  1 - - f i - )  ]--~-r + ~  2 - 3  1 - - ~ -  - 1 - ~ - ]  J r  

-4 -2~  r 4 r + ~ -- 1 -- r2 ] -- 1 -- r2 ] ] 

1 R2(  a2 5 (  R2'~ 112 5 (  R 2) a~ )  
s t -  : ]  a T -2- 7 , 

51_( R2)3/2da2 + 5 ( ( 3 1 _  R2"~1/2 (-- 1-- R2 "~ 3/2"~ a2- 

- , -  

5dal R2~da3 9 3 R 2 a3 5 a2 1-- 
-~ d--~- + 1 -  r2 ] dr § -2 1+ -~-~ r - 4 v -~" 8 7 

For this system the moment boundary condition on the particle surface is of the form 

a t  5 7 a3 21 1 AT (14) 
V/-~ § g a2 § 4 " ~  § "~'~ a4 "= ~ TO" 

The set of differential equations (13) with condition (14) on the particle surface has been solved 
numerically. The initial values of ai have been chosen by the shooting method to cut off a solution exponentially 
increasing at infinity. This gives the expression for the heat flux: 

1 R 2 AT 
Q r -  4 R r2 (15) 

5 y- + c~ To 

The dependence of parameter a on the particle size is depicted in Fig. 2. For comparison, Fig. 3 shows 
the values of the dimensionless heat flux Qr calculated for distribution function (12) (curve 1) and the data 
of the conventional Lees method (curve 2). 
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For a small particle (R/r --, 0) the a value moves toward v/-~, which coincides with the results of the 
direct method for distribution function (2). 

In the gas-dynamic regime (R/7" --~ r formula (15) leads to (10). In this limit a = v/-~/2. Accordingly, 
Ct = 1.875, which coincides with the well-known Maxwell value and differs by 14% from the exact value. 

The data obtained testify to a sufficient reliability of the method and offer hope that  it could be used 
for solving more complex problems. 
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